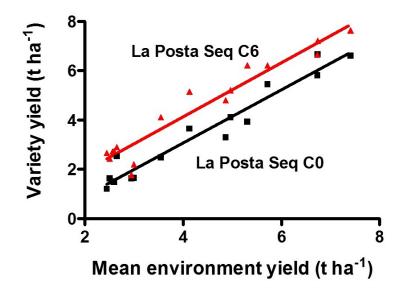
The Promise of Drought Tolerant Seed Technologies

B.M. Prasanna, Franklin Simtowe & Olaf Erenstein International Maize and Wheat Improvement Center (CIMMYT)

November 14, 2019

Drought Tolerant Maize-Index Insurance Pilot Project


Meeting, Nairobi

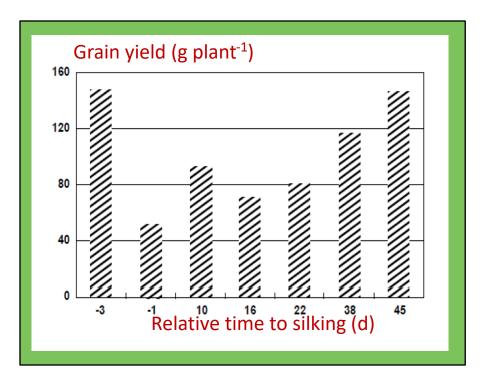
CIMMYT's success in breeding drought tolerant maize germplasm has four decades of continuous efforts....

Population	Description	Genetic material
DTP-Y and DTP-W	60% lowland tropical, 20% subtropical, 20% temperate	Derived from 25 putative drought tolerance sources (Tuxpeño Sequia, Latente, Michoacan21, Suwan 1, CIMMYT Pops. 22, 32, 62, 64, and 66); 11% landraces; rest from elite drought tolerant sources, Corn Belt hybrids, germplasm from Thailand and S. Africa
La Posta Sequia (LPS)	Lowland tropical, late- maturing, white dent.	Derived from CIMMYT Population 43 C, SR.

Drought and NUE maize germplasm development via recurrent selection was initiated at CIMMYT in 1975.

Breeding for drought tolerance at CIMMYT is nearly four decades old...

- Well-constituted pools and populations (e.g., La Posta Sequia, DTPY, DTPW) with intensive recurrent selection under drought stress
- Managed stress screening network
- Well-defined phenotyping protocols and selection criteria (e.g., Anthesissilking interval)



Stage-sensitivity for Drought in Maize

- All the growth stages in maize are, in general, vulnerable to drought.
- High vulnerability at germination and seedling establishment stages (but least genotypic variability) = NOT a breeding target.
- High susceptibility at flowering followed by grain filling stage; sufficient genetic variation = Breeding target.
- The most critical period

 one week before to
 three weeks after silk
 emergence

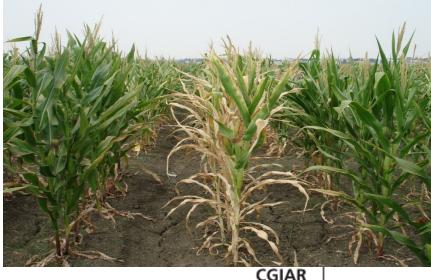
Stage-sensitivity for Drought in Maize

Growth stage	Susceptibility of yield to drought	Probability of stress	Probability of breeding success
Germination, establishment	High	Usually high	Low
Pre-flowering	Low	Depending on the environment	Medium
Flowering	High	Depending on the environment	High
Post-flowering	Medium	Usually high	Medium

The aim of managed drought is not to simulate a farmers field, but create a screen that has high probability of occurrence in farmers' fields and clearly reveals genotypic differences under stress.

Apply so much stress that yield is reduced by at least 50% (better 65-75 %) of the unstressed screening at that site => Genotype-by-stress interactions become visible

. I ON


Maize

Defining Drought Stress

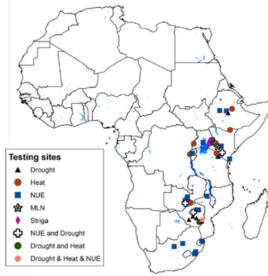
- Stage of drought stress: Vegetative; Flowering; Grain filling
- Type of drought stress: Mild, Moderate, Severe
- Interaction with other factors: Heat; Low soil N

Balance of optimum, managed drought stress locations (on-station trials) and natural stress conditions (on-farm trials) important for success in breeding DT maize

Defining Drought Tolerance

In case of maize (as per CIMMYT), "drought tolerance" is the ability of a genotype to show a **substantive and statistically significant yield advantage over the widely grown commercial checks** (tested in several drought stress locations), and often under severe drought conditions, including flowering and grain filling period.

Pillars to increase phenotyping accuracy and efficiency


Network

Protocols

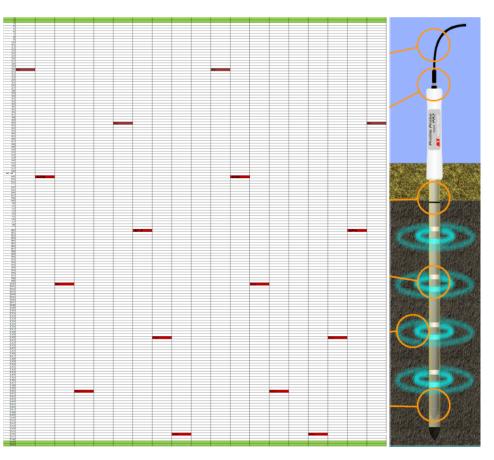
Data collection methods

updated from Prasanna et al. 2013

Harmonized Phenotyping Protocols

PHENOTYPING FOR ABIOTIC STRESS TOLERANCE IN MAIZE:

M. Zaman-Allah, P.H. Zaidi, S. Trachsel, J.E. Caims, M.T. Vinayan and K. Seetharam



Management of drought stress in field phenotyping

Pervez H. Zaidi CIMMYT-Asia Maize Program ICRISAT Campus, Hyderabad, India

Drought Stress Imposition by Monitoring the Soil Moisture Content in Dedicated Field Blocks

Operation	Date	Day/Week	Tmax	Tmin	GDD
2011-12	Date	Day, Week	IIIIux		000
	01	1	20.0	14.2	10.0
Planting	01-Dec	1	30.9	14.3	12.6
	07-Dec	Week-1	30.2	12.8	84.7
	14-Dec	Week-2	28.8	11.2	169
	21-Dec	Week-3	29.6	10.5	239.8
	28-Dec	Week-4	29.5	10.7	306.2
	04-Dec	Week-5	31.3	18.8	401.1
	11-Jan	Week-6	27.8	15.1	502.5
Last irrigation	18-Jan	49	25.4	10.2	556.4
2014-15					
Planting	30-Nov	1	29.9	14.1	11.6
	06-Dec	Week-1	30.2	12.8	82.3
	13-Dec	Week-2	26.4	10.3	157.4
	30-Dec	Week-3	30.2	11.2	212.4
	27-Dec	Week-4	28.2	9.4	276.0
	03-Jan	Week-5	28.2	10.1	345.2
	10-Jan	Week-6	26.3	8.3	405.4
	17-Jan	Week-7	27.3	8.4	469.3
Last irrigation	22-Jan	54	27.2	9.8	554.0

CIMMYT's Breeding Strategies for Improving Drought Tolerance in Maize


- Indirect selection under favourable environments
- 2. Direct selection under stress environments
- Selection for physiological and morphological traits

- Grain yield => increase
- Ears per plant => increase
- Anthesis-silking interval (ASI) => decrease
- Leaf senescence => decrease
- Leaf rolling => decrease
- Tassel size => decrease

Drought tolerant and susceptible hybrids under managed drought stress at Kiboko, Kenya

Several high-yielding and DT DH lines developed by CIMMYT Maize Breeding Program

DT vs. Commercial Drought-vulnerable Hybrids (Malawi; 2015)

MH28, a DT hybrid

Commercial drought-susceptible hybrids

research program on Maize

Source: Peter Setimela (CIMMYT)

Driving Genetic Gain under Droughtprone Environments

research program on Maize

CGIAR

Drought Tolerant Maize in Sub-Saharan Africa

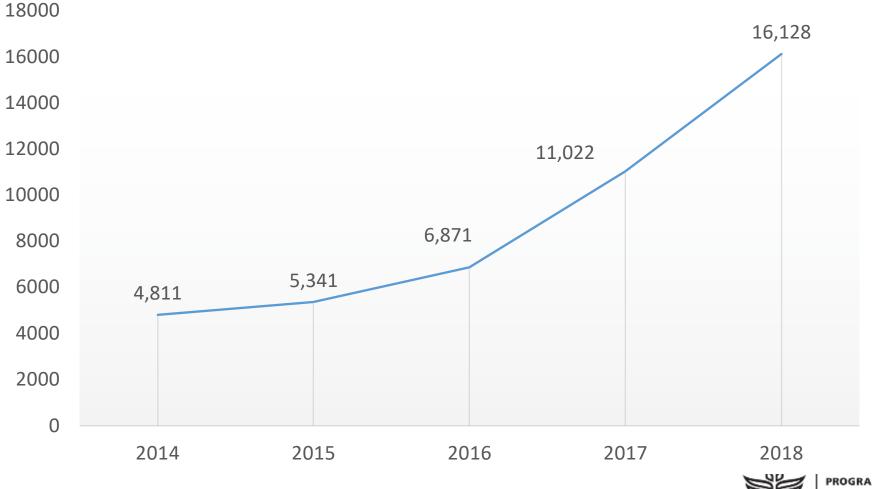
DT maize varieties,

developed by CIMMYT and IITA, released across 20 countries in sub-Saharan Africa, grown on nearly **3.5 M ha.**

 Partnerships with over 100
 SME seed companies in producing and commercializing annually ~85,000 tons of certified DT maize seed across Africa.

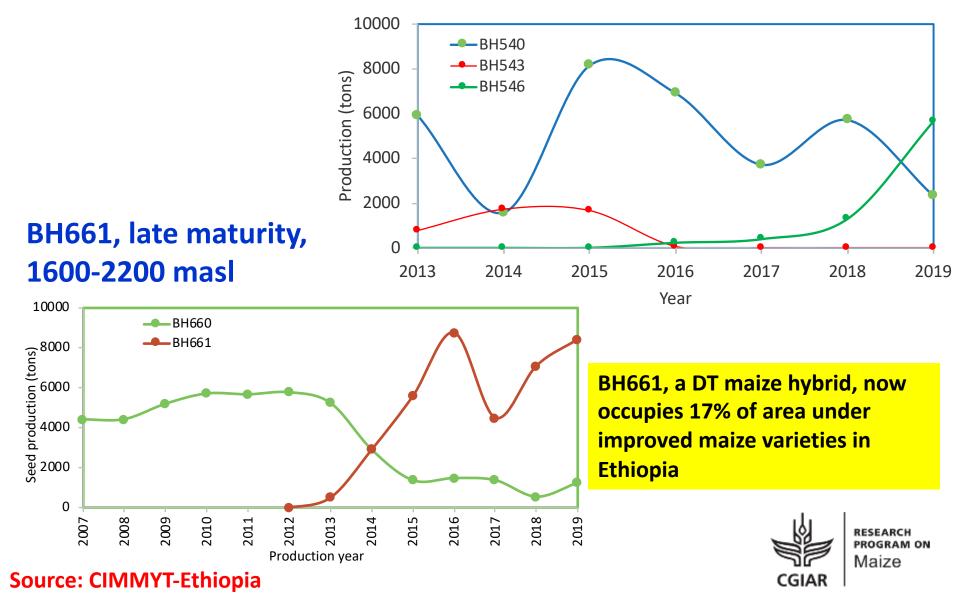
How did CIMMYT-derived Hybrids perform during the El Nino-induced drought and heat in southern Africa (2015-16)

CIMMYT-derived varieties **yielded almost double** than the most popular commercial variety (SC513)


1.5 Mg ha⁻¹ compared to 2.9 Mg ha⁻¹

Source: Setimela et al. 2017

Are we achieving scale?


DT varieties certified seed production (tons) in UG and KE, 2014-2018

CGIAR

Variety Replacement in the Mid-/Upper-altitude, Ethiopia

BH546, medium maturity, 1000-1800 masl

DT Maize Adoption and Impacts in Africa (1/2)

Climate Change (2015) 133:283-299.

Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: Determinants of adoption in eastern and southern Africa

Monica Fisher¹ • Tsedeke Abate² • Rodney W. Lunduka³ • Woinishet Asnake⁴ • Yoseph Alemayehu⁴ • Ruth B. Madulu⁵

Food Security (2014) 6:217-230.

Agriculture and Food Security (2017) 6:30.

RESEARCH

Characteristics of maize cultivars in Africa: How modern are they and how many do smallholder farmers grow?

Tsedeke Abate^{1*}⁽²⁾, Monica Fisher^{2,3}, Tahirou Abdoulaye⁴, Girma T. Kassie⁵, Rodney Lunduka⁶, Paswel Marenya² and Woinishet Asnake²

Evaluating the impact of improved maize varieties on food security in Rural Tanzania: Evidence from a continuous treatment approach

Menale Kassie · Moti Jaleta · Alessandra Mattei

International Food and Agribusiness Management Review 19A, 75-92

Targeting Drought-Tolerant Maize Varieties in Southern Africa: A Geospatial Crop Modeling Approach Using Big Data

Kindie Tesfaye^{®a}, Kai Sonder^b, Jill Cairns^e, Cosmos Magorokosho^d, Amsal Tarekegn^e, Girma T. Kassie^f, Fite Getaneh^g, Tahirou Abdoulaye^h, Tsedeke Abateⁱ, and Olaf Erenstein^j

Global Environmental Change 35 (2015) 82-92

The influence of gendered roles and responsibilities on the adoption of technologies that mitigate drought risk: The case of drought-tolerant maize seed in eastern Uganda

Monica Fisher^{a,*}, Edward R. Carr^b

Climate and Development (2019) 11:35–46 Impact of adoption of drought-tolerant maize varieties on total maize production in south Eastern Zimbabwe

Rodney Witman Lunduka, Kumbirai Ivyne Mateva, Cosmos Magorokosho & Pepukai Manjeru

DT Maize Adoption and Impacts in Africa (2/2)

Land Use Policy 88 (2019) 104091

Impacts of drought-tolerant maize varieties on productivity, risk, and

resource use: Evidence from Uganda

Franklin Simtowe^{a,*}, Emily Amondo^b, Paswel Marenya^a, Dil Rahut^c, Kai Sonder^c, Olaf Erenstein^c

Agricultural and Food Economics (2019) 7:15 Heterogeneous seed access and information exposure: implications for the adoption of drought-tolerant maize varieties in Uganda

F Simtowe, P Marenya, E Amondo, M Worku, D Rahut, O Erenstein

IJCCSM 11, 570-591 **Productivity and production risk effects of adopting drought-tolerant maize varieties in Zambia** E Amondo, F Simtowe, D Rahut, O Erenstein

Food Sec. (2015) 7:1225-1238

Subsidies promote use of drought tolerant maize varieties despite variable yield performance under smallholder environments in Malawi Stein T. Holden¹ • Monica Fisher²

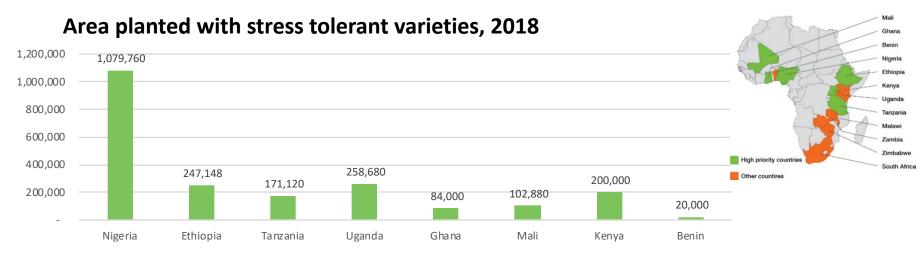
World Development Vol. 94, pp. 465–477, 2017 Modeling Preference and Willingness to Pay for Drought Tolerance (DT) in Maize in Rural Zimbabwe

GIRMA T. KASSIE^a, AWUDU ABDULAI^b, WILLIAM H. GREENE^c, BEKELE SHIFERAW^d, TSEDEKE ABATE^e, AMSAL TAREKEGNE^f and CHLOE SUTCLIFFE^{g,*}

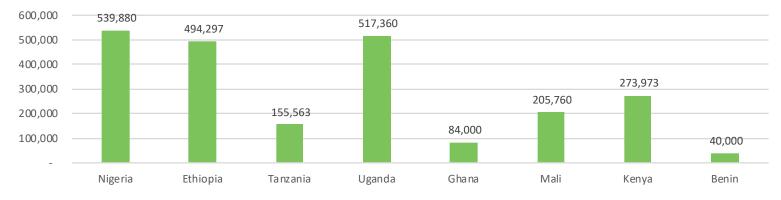
Journal of Environmental Management 203 (2017) 106-113

Measuring the impacts of adaptation strategies to drought stress: The case of drought tolerant maize varieties

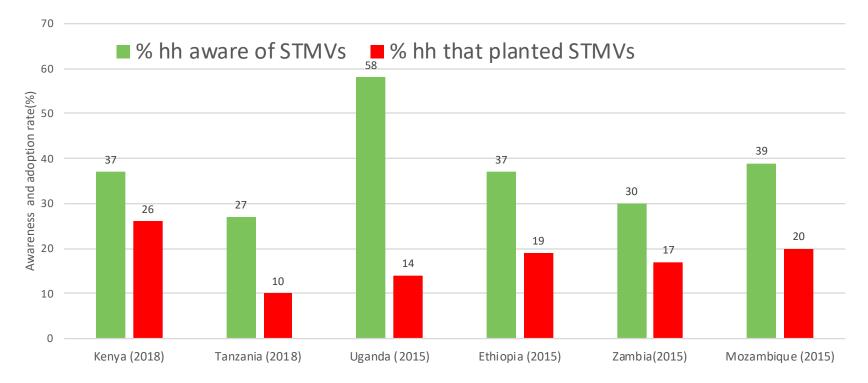
Tesfamicheal Wossen ^{a, *}, Tahirou Abdoulaye ^b, Arega Alene ^c, Shiferaw Feleke ^d, Abebe Menkir ^b, Victor Manyong ^d


Journal of Agricultural Economics, Vol. 70, No. 1, 2019, 198-214

Adoption of Drought Tolerant Maize Varieties under Rainfall Stress in Malawi

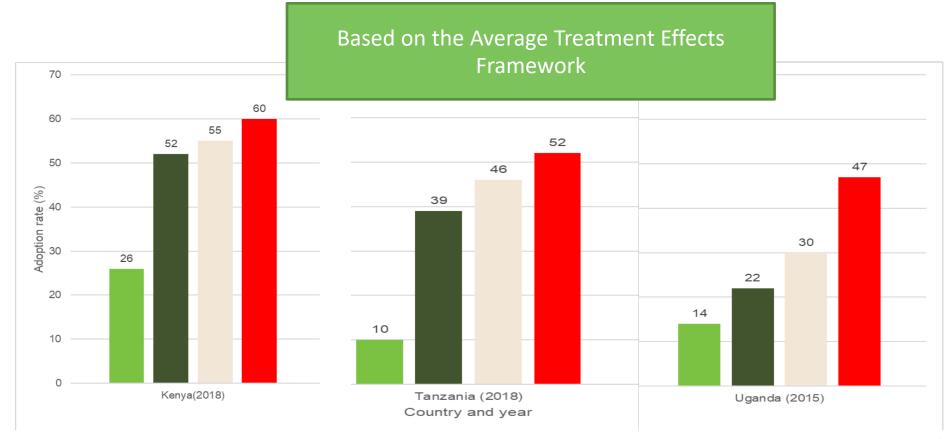

Samson P. Katengeza, Stein T. Holden and Rodney W. Lunduka¹

Estimated stress tolerant maize area and households-2018


Farmers planting ST varieties, 2018

Compiled by Franklin Simtowe and team STMA: Stress tolerant maize for Africa-2018

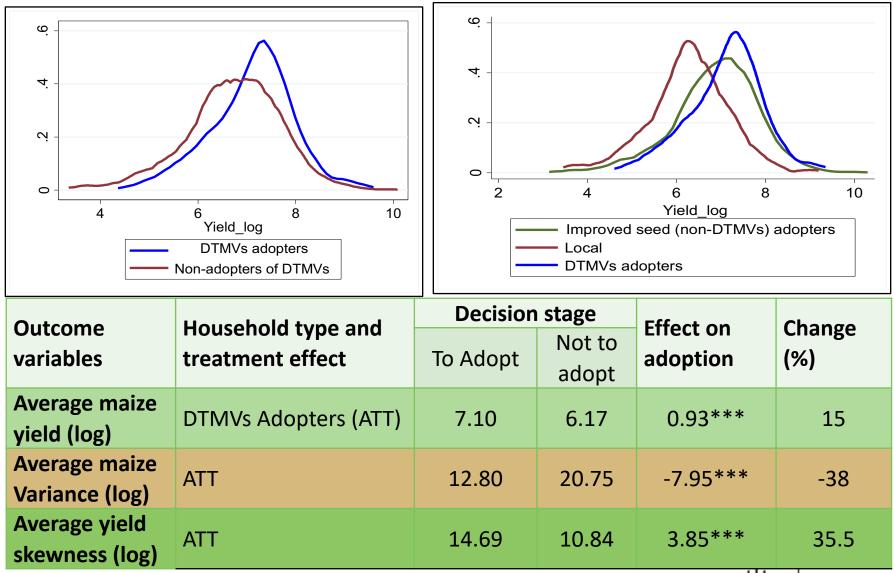
% households aware of STMVs and adoption rates based on hh surveys



-Reasons for Non-adoption are many: Knowledge, seed availability, price of seed, farmer preferences...

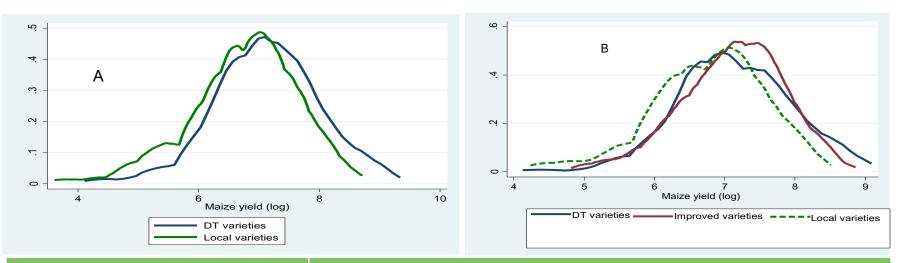
- These have policy and technical implications

Potential adoption rates if farmers have information, seed and price is affordable


Actual adoption rate

Potential adoption(exposure)

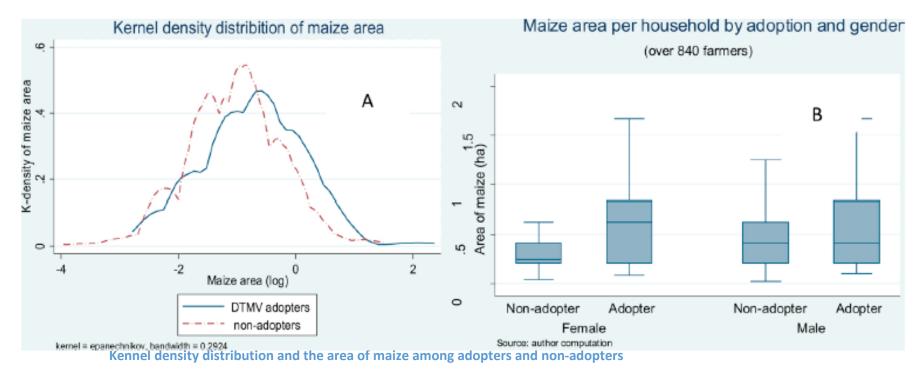
Potential adoption(seed access)


Potential adoption(seed affordability)

The Impact of STM on yield in Zambia

The impact of STM on yield in Uganda

Outcome variables


Outcome variables						
		Adopters	Non-	Effect on	Change%	
			adopters	adoption		
Average maize yield	(ATT)	7.18	6.22	0.96***	16	
Average skewness	Adopters (ATT)	14.71	11.3	3.41***	30	
					PROGRAM	

program on Maize

Simtowe et al, 2019 (LUP)

The Impact of STMV Maize area in Uganda

- ST adoption increases investment on the extensive and intensive margin
- Female farmers particularly, tend to increase maize land when they grow STM
- They also tend to hire more labor (intensive margin)

Summing up

- Supply & demand for DT maize increasing
- Drought tolerance vs drought resistance
 Timing & intensity
- Bundling diverse traits
 - Stress tolerance beyond drought
 - Selected for good performance under both good and stressed conditions
- DT maize +ve impacts on farmer yields
 - levels & distribution

Thanks!

- MAIZE Partners in Africa, Asia and LatAm for their tremendous support
- Funding agencies, especially Bill & Melinda Gates Foundation, USAID, DFID, Syngenta Foundation for Sustainable Agriculture, and MAIZE CRP.
- **CIMMYT colleagues** for their commitment to the mission

www.MAIZE.org

